摘要:高速中頻采樣信號處理平臺在實際應用中有很大的前景,提出采用FPGA+DSP的處理結構,結合高性能A/D和D/A處理芯片,設計了一個通用處理平臺,并對其主要性能進行了測試。實驗與實際應用表明,該系統具有很強的數據處理能力和很好的穩定性。
關鍵詞:高速中頻;信號處理;FPGA;DSP
0 引言
現代社會正向數字化、信息化方向高速發展,在這一過程中,往往需要高速信號的實時性數字化處理。例如,隨著科技的進步,現代雷達等應用信號的數字化處理上有了長足的發展,但也帶來了新的問題,這些應用的數字信號處理具有海量運行需求的應用背景,如巡航導彈末制導雷達地形匹配、合成孔徑雷達的成像處理、相控陣雷達的時空二維濾波處理等領域。目前,單片DSP難以勝任許多信號處理系統的要求。而常見的解決方案也是高速A/D采樣與信號處理功能是在多塊不同的板卡上實現,這給實際應用帶來很插件電感器多不便。
鑒于上述現有技術一體成型電感所存在的問題,本設計平臺的目的是:
(1)實現高速中頻信號(如雷達信號)的數字化處理并進行實時傳輸數據或進行數據的實時計算,并能通過輸出電路進行結果顯示;
(2)自定義控制總線可以實現對高速中頻信號處理板進行靈活控制,具有較強的可配置性和豐富的靈活性;
(3)高速A/D采樣與D/A回放及數據處理單元集成在一塊板上,在集成度高的同時也降低了高速信號在傳輸過程中出現差錯的概率。
1 平臺設計方案
高速中頻采樣信號處理平臺由主控制電路、高速A/D與電感器原理圖D/A電路、信號處理單元電路、光纖通道電路、時鐘管理電路、存儲單元和外部接口電路組成,其總體框圖如圖1所示。
在實際應用過程中,四路A/D通道可以接收不同的信號源的信號,D/A通路可以對外進行數據顯示等多種功能,時鐘管理電路管理內外時鐘的使用及對板上系統供給工作時鐘,兩路光纖通道可以與其他高速設備相連接,自定義總線可以與CPU或主控制器相連接對平臺進行有效靈活的控制。
1.1 高速A/D與D/A設計
四路高速A/D采樣通道采用兩片NS公司的ADC081000實現,每片有兩個A/D通道,相比多片A/D器件的通道間相位恒定設計是一個難點而言,單片A/D器件可以更容易實現兩路通道間的相位恒定。ADC081000是一款高性能的A/D采集芯片,單通道8 b采樣頻率為1 GHz。本平臺中A/D通道間采樣數據的相位恒定是利用采樣時鐘相位間的恒定來實一體成型電感器現的。在設計時,使時鐘芯片到兩片A/D器件間的時鐘線等長,兩片A /D器件到FPGA間的時鐘線與數據線也分別等長,并且還利用一片FPGA設計了對兩片A/D器件的軟啟動控制,這就更保證了四路通道間采樣時鐘的相位恒定。
兩路高速D/A通道采共模電感用兩片AD公司的AD9736實現,AD9736單通道14 b,采樣頻率可達1 200 MSPS。兩路高速D/A通路也利用一片FPGA作控制,實現通道間相位差的恒定。
1.2 信號處理單元設計
信號處理單元包括FPGA和DSP兩大部分。
FPGA部分主要由四片Virtex-4 SX55組成,四片FPGA間實現有串行連接和相隔間的連接。FPGA電路主要是實現對高速A/D采集數據的預處理和高速D/A回放數據處理,并且控制高速A/D電路采樣時鐘的相位恒定與高速D/A電路采樣時鐘的相位恒定,同時也根據需要與相應的DSP進行數據交換或傳遞。FPGA電路上連接的光接口電路也可以實現與其他系統進行高速、實時的數據交換。
A/D采樣之后的數字信號速率非常高,要從這些高速信號中得到有用的基帶信號,需要有效地對其進行數字下變頻、抽取、濾波等處理,這些功能都可以通過FPGA來實現。FPGA具有較高的處理速度和較高的穩定性,同時又具有設計靈活、易于修改和維護的優點,可以適應不同系統的要求,提高了系統的適用性及可擴展性。
DSP電路是本平臺信號處理的核心,完成大部分的數據處理工作,由四片ADSP TS201組成,四片DSP間實現了兩兩間的Link口互連,構成了分布式并行系統,可以把復雜的算法分割成小的任務給各處理器完成,從而減少任務的執行時間。
根據設計需要,平臺數據的傳輸量很大,多DSP之間的數據傳輸速度尤為重要,采用Link口來傳輸數據,可以在不增加輔助電路的前提下,DSP間的直接互聯。而且,基于Link口的數據傳輸采用專門的數據通道,不占有系統總線資源,消除了傳輸過程中的總線仲裁,減少了網絡延遲帶來的不確定因素。四片DSP間Link口的傳遞數據能力高達600 MB/s。
大功率電感廠家 |大電流電感工廠