引言
在21世紀,移動通信技術和市場飛速發展,在新技術、市場需求的共同作用下,出現了第三代移動通信系統-3G,3G中采用碼分多址(CDMA)技術來處理多徑問題,以獲得多徑分集增益。
然而在該體制中,多徑干擾和多用戶干擾始終并存,在用戶數較多的情況下,實現多用戶檢測是非常困難的。并且CDMA本身是一個自擾系統,所有的移動用戶都占用相同的帶寬和頻率,所以在系統容量有限的情況下,用戶數越多就越難達到較高的通信速率,因此3G系統所提供的2Mb/s帶寬是共享式的,當多個用戶同時使用時,平均每個用戶可使用的帶寬遠低于2Mb/s,而這樣的帶寬并不能滿足移動用戶對一些多媒體業務的需求。
不同領域技術的綜合與協作,伴隨著全新無線寬一體電感器帶技術的智能化,以及定位于用戶的新業務,這一切必將繁衍出新一代移動通信系統4G。相比于3G,4G可以提供高達100Mb/s的數據傳輸速率,支持從語音到數據的多媒體業務,并且能達到更高的頻譜利用率以及更低的成本。
為了達到以上目標,4G中必須采用其他相對于3G中的CDMA這樣的突破性技術,尤其是要研究在移動環境和有限頻譜資源條件下,如何穩定、可靠、高效地支持高數據速率的數據傳輸。因此,在4G移動通信系統中采用了OFDM技術作為其核心技術,它可以在有效提高傳輸速率的同時,增加系統容量、避免高速引起的各種干擾,并具有良好的抗噪聲性能、抗多徑信道干擾和頻譜利用率高等優點。
本文將對OFDM的基本原理以及其調制/解調技術的實現和循環前綴技術進行介紹,并在三個主要方面將OFDM與CDMA技術進行對比分析。
2 OFDM技術分析
2.1 OFDM基本原理
正交頻分復用的基本原理可以概述如下:把一路高速的數據流通過串并變換,分配到傳輸速率相對較低的若干子信道中進行傳輸。在頻域內將信道劃分為若線藝電感干相互正交的子信道,每個子信道均擁有自己的載波分別進行調制,信號通過各個子信道獨立地進行傳輸。
由于多徑傳播效應會造成接收信號相互重疊,產生信號波形間的相互干擾,形成符號間干擾,如果每個子信道的帶寬被劃分的足夠窄,每個子信道的頻率特性就可近似看作是平坦的。如圖1所示。
因此,每個子信道都可看作無符號間干擾的理想信道。這樣,在接收端不需要使用復雜的信道均衡技術即可對接收信號可靠地進行解調。在OFDM系統中,通過在OFDM符號之間插入保護間隔來保證頻域子信道之間的正交性,以及消除由于多徑傳播效應所引起的OFDM符號間的干擾。因此,OFDM特別適合于在存在多徑衰落的移動無一體成型電感器線信道中高速傳輸數據。OFDM的原理框圖如2所示。
如圖工字電感器2所示,原始高速率比特流經過串/并變換后變為若干組低速率的比特流d(M),這些d(M)經過調制后變成了對應的頻域信號,然后經過加循環前綴、D/A變換,通過RF發送出去;經過無線信道的傳播后,在接收機以與發送機相反的順序接收解調下來,從而得到原發送信號。
圖2中d(M)為第M個調制碼元;圖中的OFDM已調制信號D(t)的表達式為:
電感器廠家式(1)中:T為碼元周期加保護時間;fn為各子載波的頻率,可表示為:
式(2)中:f0為最低子載波頻率;Ts為碼元周期。
在發射端,發射數據經過常規QAM調制形成基帶信號。然后經過串并變換成M個子信號,這些子信號再調制相互正交的M個子載波,其中/正交0表示的是載波頻率間精確的數學關系,其數學表示為QT0fx(t)fy(t)dt=0,最后相加成OFDM發射信號。實際的輸出信號可表示為: