超高亮度LED的應用面不斷擴大,首先進入特種照明的市場領域,并向普通照明市場邁進。由于LED芯片輸入功率的不斷提高,對這些功率型LED的封裝技術提出了更高的要求。功率型LED封裝技術主要應滿足以下兩點要求:一是封裝結構要有高的取光效率,其二是熱阻要盡可能低,這樣才能保證功率LED的光電性能和可靠性。
半導體LED若要作為照明光源,常規產品的光通量與白熾燈和熒光燈等通用性光源相比,距離甚遠。因此,LED要在照明領域發展,關鍵是要將其發光效率、光通量提高至現有照明光源的等級。功率型LED所用的外延材料采用MOCVD的外延生長技術和多量子阱結構,雖然其內量子效率還需電感器生產廠家進一步提高,但獲得高發光通量的最大障礙仍是芯片的取光效率低。現有電感器生產廠家的功率型LED的設計采用了倒裝焊新結構來提高芯片的取光效率,改善芯片的熱特性,并通過增大芯片面積,加大工作電流來提高器件的光電轉換效率,從而獲得較高的發光通量。除了芯片外,器件的封裝技術也舉足輕重。關鍵的封裝技術工藝有:
散熱技術
傳統的指示燈型LED封裝結構,一般是用導電感器企業電或非導電膠將芯片裝在小尺寸的反射杯中或載片臺上,由金絲完成器件的內外連接后用環氧樹脂封裝而成,其熱阻高達250℃/W~300℃/W,新的功率型芯片若采用傳統式的LED封裝形式,將會因為散熱不良而導致芯片結溫迅速上升和環氧碳化變黃,從而造成器件的加速光衰直至失效,甚至因為迅速的熱膨脹所產生的應力造成開路而失效。
因此,對于大工作電流的功率型LED芯片,低熱阻、散熱良好及低應力的新的封裝結構是功率型LED器件的技術關鍵。可采用低阻率、高導熱性能的材料粘結芯片;在芯片下部加銅或鋁質熱沉,并采用半包封結構,加速散熱;甚至設計二次散熱裝置,來降低器件的熱阻。在器件的內部,填充透明度高的柔性硅橡膠,在硅橡膠承受的溫度范圍內(一般為-40℃~200℃),膠體不會因溫度驟然變化而導致器件開路,也不會出現變黃現象。零件材料也應充分考慮其導熱、散熱特性,以獲得良好的整體熱特性。
二次光學設計技術
為提高器件的取光效率,設計外加的反射杯與多重光學透鏡。
功率型LED白光技術
常見的實現白光的工藝方法有如下三種:
(1)藍色芯片上涂上YAG熒光粉,芯片的藍色光激發熒光粉發出540nm~560nm的黃綠光,黃綠光與藍色光合成白光。該方法制備相對簡單,效率高,具有實用性。缺點是布膠量一致性較差、熒光粉易沉淀導致出光面均勻性差、色調一致性不好;色溫偏高;顯色性不夠理想。
(2)RGB三基色多個芯片或多個器件發光混色成白光,或者用藍+黃綠色雙芯片補色產生白光。只要散熱得法,該方法產生的白光較前一種方法穩定,但驅動較復雜,另外還要考慮不同顏色芯片的不同光衰速度。
(3)在紫外光芯片上涂RGB熒光粉,利用紫光激發熒光粉產生三基色光混色形成白光。由于目前的紫外光芯片和RGB熒光粉效率較低,仍未達到實用階段。
我們認為,照明用W級功率LED產品要實現產業化還必須解決如下技術問題:
1.粉涂布量控制:LED芯片+熒光粉工藝采用的涂膠方法,通常是將熒光粉與膠混合后用分配器將其涂到芯片上。在操作過程中,由于載體膠的粘度是動態參數、熒光粉比重大于載體膠而產生沉淀以及分配器精度等因素的影響,此工藝熒光粉的涂布量均勻性的控制有難度,導致了白光顏色的不均勻。
2.片光電參數配合:半導體工藝的特點,決定同種材料同一晶圓芯片之間都可能存在光學參數(如波長、光強)和電學(如正向電壓)參數差異。RGB三基色芯片更是這樣,對于白光色度參數影響很大。這是產業化必須要解決的關鍵技術之一。
3.根據應用要求產生的光色度共模電感器參數控制:不同用途的產品,對白光LED的色坐標、色溫、顯色性、光功率(或光強)和光的空間分布等要求不同。上述參數的控制涉及產品結構、工藝方法、材料等多方面因素的配合。在產業化生產中,對上述因素進行控制,得到符合應用要求、一致性好的產品十分重要。
檢測技術與標準
隨著W級貼片電感功率芯片制造技術和白光LED工藝技術的發展,LED產品正逐步進入(特種)照明市場,顯示或指示用的傳統LED產品參數檢測標準及測試方法已不能滿足照明應用的需要。國內外的半導體設備儀器生產企業也紛紛推出各自的測試儀器,不同的儀器使用的測試原理、條件、標準存在一定的差異,增加了測試應用、產品性能比較工作的難度和問題復雜化。
大功率電感廠家 |大電流電感工廠