簡介
“同步檢波器助力精密低電平測量” 一文刊于2014年11月的《模擬對話》雜志,該文討論了存在相對較高噪聲電平情況下使用同步解調測量低電平信號的優勢。本文討論在嚴格的功耗和成本限制系統中使用同步解調進行傳感器信號調理時的一些設計考慮因素,進一步深入該話題。經仔細設計后,模擬系統在簡潔性、低成本和低功耗方面將會是無與倫比的。該架構將在模擬域中執行大部分信號處理。
傳感器激勵
傳感器隨處可見,它們用來測量溫度、光照、聲音和其他各種環境參數。一些傳感器的輸出電壓或電流取決于某些物理參數。例如,熱電偶產生與參考結點和測量點之間溫度差成比例的電壓。大部分傳感器的傳遞函數相對于物理參數遵循已知的關系。傳遞函數通常是一個阻抗,電流是傳感器輸入,而傳感器兩端的電壓表示目標參數。阻性傳感器(比如稱重傳感器、RTD和電位計)分別用來測量應力、溫度和角度。就一階而言,阻性傳感器與頻率無關,并且沒有相位響應。
很多傳感器因為它們的傳遞函數隨頻率和相位改變,所以要求使用交流激勵信號。這樣的例子有感性近距離傳感器和容性濕度傳感器。生物阻抗測量可以獲取有關呼吸率、脈搏率、水合作用和其他各種生理參數。這些情況下,幅度、相位(或兩者)都可用來確定檢測參數的數值。
在某些應用中,傳感器可以把待測樣本轉換成感應器。例如,色度計使用LED將光線照射穿過待測液體樣本。樣本的光吸收調制光電二極管檢測的光量,以便揭示待測液體的特性。血氧含量可以通過測量血管組織中的紅光和紅外光吸收之差來確定。超聲傳感器根據超聲在氣體中行進的多普勒頻移來測量氣流速率。所有這些系統都可以使同步解調來實現。 大功率電感廠家 |大電流電感工廠